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By Owen Fuller

Based on the notes by R. Gratwick

Introduction

A complex number has the form z = x + iy, where z ∈ C is a
field.
Modulus of complex number (Mod): r =

√
x2 + y2

Argument of complex number (arg): arg(z) = {θ : z =
reiθ} = {Arg(z) + 2πk : k ∈ Z}
Where −π < Arg(z) ≤ π is the principal value of the argument.
De Moivre’s Formula: cos(nθ) + isin(nθ) = (cosθ + isinθ)n

Triangle Inequality: |z + w| ≤ |z|+ |w|
Reverse Triangle Inequality: ||z| − |w|| ≤ |z − w|
Definition 1.2.1: Let z0 ∈ C, and ε > 0

• The open ε-disc centred at z0 is the set

Dε(z0) = {z ∈ C : |z − z0| < ε}

• The closed ε-disc centred at z0 is the set

D̄ε(z0) = {z ∈ C : |z − z0| ≤ ε}

• The punctured ε-disc centred at z0 is the set

D′ε(z0) = {z ∈ C : 0 < |z − z0| < ε} = Dε(z0)\{z0}

Complex Functions

Complex Functions: Consider f : C → C. Then for each z,
f(z) = f(x+ iy) = u(x, y) + iv(x, y).
Continuous: Let S ⊆ C, f : S → C, and z0 ∈ S. Then f is
continuous at z0 if for all ε > 0, there exists δ > 0 such that

|f(z0)− f(z)| < ε whenever z ∈ S satisfies |z0 − z| < δ

Lemmas 1.3.7/8 Let f : C → C. Then f is continuous
at z0 iff u and v are. And f is continuous iff the preimage
f−1(U) = {z ∈ C : f(z) ∈ U} is open for all open U ⊆ C
Differentiability: Let z0 ∈ C, U ⊆ C be a neighbourhood of
z0 and f : U → C. Then f is differential at z0 if the limit below
exists.

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

Holomorphic: Let z0 ∈ C. We say f is holomorphic at z0

if there exists a neighbourhood U of z0 on which f is defined
and differentiable. If it’s holomorphic at every z ∈ U then f is
holomorphic on U .

Chain Rule: Let z0 ∈ C, U be a neighbourhood of z0,
g : U → C be such that g(U) is a neighbourhood of g(z0),
and f : g(U) → C. Suppose g is differentiable at z0 and f is
differentiable at g(z0). Then the composition of f ◦ g : U → C
is differentiable at z0

(f ◦ g)′(z0) = f ′(g(z0))g′(z0)

Cauchy-Riemann equations: Let f be differential at z0, then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0), and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0)

If u and v are continuously differentiable on a neighbourhood of
(x0, y0), and satisfy C-R at (x0, y0), then f is differentiable at
z0.
Harmonic Functions: Let h : R2 → R2. Then h is harmonic
if for all (x, y) ∈ R2 we have:

∂2h

∂x2
(x, y) +

∂2h

∂y2
(x, y) = 0

The Complex Exp and Log

exp(z + 2πi) = exp(z)

log(z) = ln |z|+ i arg(z) = {ln(r) + iθ + i2πk : k ∈ Z}
Branch Cut:

Lz0,φ =
{
z ∈ C : z = z0 + reiφ for r ≥ 0

}
Cut Plane: Dz0,φ denotes the cut plane with a branch point
at z0 and a branch cut along Lz0,φ. i.e Dz0,φ = C\Lz0,φ.
Principal Branch: Log(z) := ln |z|+ iArg(z)
Branch of log: Logφ(z) = ln |z|+ iArgφ(z)

with φ < Argφ(z) ≤ φ+ 2π

Which is holomorphic on the cut plane Dφ, with Log′φ(z) = 1
z

for all z in Dφ.

Conformal Maps and
Möbius Transformations

Conformal: We say f : U → C is conformal if f preserves an-
gles: i.e if the angle between the images under f of two straight
lines in U is equal to the angle between the two straight lines
themselves. If f is holomorphic then is preserves angles at every
z0 ∈ U where f ′(z0) 6= 0.
Theorem: If |f ′(z)| 6= 0 for all z ∈ C then f(z) is conformal on
C.

Möbius Transformation: is a function of the form:

f(z) =
az + b

cz + d

where a, b, c, d ∈ C are such that ad 6= bc.

Lemma 2.2.3: To a complex matrix M = ((a, b), (c, d)) with
det(M) = 1 we associate the Möbius transformation fM (z) =
az+b
cz+d

. Under this correspondence we have

fM1M2 = fM1 ◦ fM2 and fM−1 = f−1
M

Types of Möbius Boys:

• Translation: f(z) = z + b

• Rotation: f(z) = az, with |a| = 1, so that a = eiθ

• Dilation: f(z) = rz, where r > 0

• Inversion: f(z) = 1/z

Theorem 2.4.2: Let f be a Möbius transformation. Then f is
a composition of a finite number of translations, rotations, dila-
tions and, iff f does not fix the point at infinity, one inversion.

Cor 2.4.3: Möbius transformations map circlines to circlines.
(circle or straight line)

Integration

∫ b

a

f(t)dt :=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt

Let [a, b] ⊆ R be an interval, and let f, g : [a, b] → C be
integrable, and αβ ∈ C. Then

• αf + βg is integrable

• If f is continuous and f = dF
dt

for a differentiable function
F : [a, b]→ C Then:

∫ b

a

f(t)dt = F (b)− F (a)

•

|
∫ b

a

f(t)dt |≤
∫ b

a

|f(t)|dt
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Contour Integrals

Definition 3.2.3: Let z0, z1 ∈ C be distinct, Γ be a regular
curve connecting z0 and z1 and f : Γ→ C be continuous. Then
we define the integral of f along Γ by:∫

Γ

f(z)dz =

∫ t1

t0

f(γ(t))γ′(t)dt

Arclength: Let Γ be a regular curve in C. We define arclength
`(Γ) by

`(Γ) :=

∫ t1

t0

|γ′(t)|dt =

∫ t1

t0

√
x′(t)2 + y′(t)2dt

e.g. let Γ be an arc of a circle of radius r traced through an
angle θ. Then `(Γ) = rθ
Lemma 3.2.1: Let Γ be parametrised by γ : [0, 1] → C, then
−Γ runs in the opposite direction, but along the same path,
parametrised by γ̄(t) = γ(1− t) with∫

−Γ

f(z)dz = −
∫

Γ

f(z)dz

M-L Lemma: Let Γ be a regular curve in C, and let f : Γ→ C
be continuous, then:

|
∫

Γ

f(z)dz| ≤ max
z∈Γ
|f(z)|`(Γ)

Domain Definition: We say D ⊆ C is a domain if D is open
and every two points in D can be connected by a contour which
lies wholly in D.
Fundamental Theorem of Calculus: Let D ⊆ C be a do-
main, Γ be a contour in D joining points z0, z1 ∈ D, and
f : D → C have an antiderivative F on D Then:∫

Γ

f(z)dz = F (z1)− F (z0)

Path Independence: Let D ⊆ C be a domain, and f : D → C
be continuous. Then the following are equivalent:

• f has an antiderivative F on D

•
∫

Γ
f(z)dz = 0 for all closed contours Γ in D

• All contour integrals
∫

Γ
f(z)dz are independent of path Γ,

and depend only on endpoints

Cauchy’s Integral Theorem: Let Γ be a loop, and f be holo-
morphic inside and on Γ. Then:∫

Γ

f(z)dz = 0

Theorem 3.4.11: Let Γ be a loop which does not pass through
z0. Then: ∫

Γ

1

z − z0
=

{
2πi if z0 ∈ Int(Γ)

0 otherwise

Cauchy Integral Formula: Let Γ be a loop, z0 be in the
interior of Γ, and f be holomorphic inside and on Γ. Then:

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz

Generalised Cauchy Integral Formula: Let Γ be a loop, f
be holomorphic inside and on Γ, and z lie inside Γ. Then f is
infinitely differentiable at z and for all positive integers n:

f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw

Liouville’s Theorem and Applications

Liouville’s Theorem: Let f be holomorphic C and be
bounded, i.e. satisfy for some M > 0, |f(z)| ≤M for all z ∈ C.
Then f is constant.
Fundamental Theorem of Algebra: Let P : C → C be a
polynomial. Then if P is non-constant, P has at least one root,
i.e. there exists at least one z st P (z) = 0.

The Maximum Modulus Principle

Theorem 3.7.1: Let D ⊆ C be a domain, z0 ∈ D and R > 0
be such that the closed disc D̄R(z0) ⊆ D, and f be holomorphic
on D Then

f(z0) =
1

2π

∫ 2π

0

f(z0 +Reit)dt

Maximum Modulus Principle: Let D ⊆ C be a domain,
and f be holomorphic and bounded on D, |f(z)| ≤ M , say, for
all z ∈ D, for some M > 0. If |f(z)| achieves its maximum at
z0 ∈ D, then f is constant on D.

Maximum/Minimum Principle for Harmonic Func-
tions: Let D ⊆ R2 be a domain, and φ : D → R be harmonic,
such that φ is bounded above or below on D by M > 0, and
φ(z0) = M for some z0 ∈ D. Then φ is constant on D.

Series

Infinite Series

Definition 4.1.1: We say a series converges if the sequence
Sn ∈ C of partial sums Sn = Σnj=0zj is a convergent sequence,

with limit S ∈ C, in which case we say that Σnj=0zj = S. Oth-
erwise the series is divergent.
If Sn is a convergent series, then zn → 0 as n→∞.
While zn → 0 is a necessary condition for the series to converge,
it is not sufficient. e.g. Σnj=1

1
j

is divergent.
The Comparison Test: Let zn ∈ C be a sequence such that
|zn| ≤ Mn for some non-negative real numbers Mn, for all
n ≥ n0 for some n0 ∈ N, where Σnj=0Mj is a convergent se-
ries. Then Σnj=0zj is a convergent series.
Lemma 4.1.7: Σnj=0c

j is convergent iff |c| < 1.
The Ratio Test: Let zn ∈ C be a sequence, and suppose that

lim
n→∞

|zn + 1

zn
| = L

• If L < 1, the series Σnj=0zj is convergent

• If L > 1, the series Σnj=0zj is divergent

• If L = 1 then the test is inconclusive

Pointwise Convergence: Let S ⊆ C, and fn : S → C be a
sequence of functions. We say that fn converges pointwise to a
function f : S → C if for each z ∈ S, for any ε > 0, there exists
N ∈ N such that:

|fn(z)− f(z)| < ε whenever n ≥ N

Thus the sequence of complex numbers defined by fn(z) con-
verges to f(z)
Uniform Convergence: Let S ⊆ C, and fn : S → C be a
sequence of functions. We say that fn converges uniformly to a
function f : S → C if for any ε > 0, there exists N ∈ N such
that for all z ∈ S:

|fn(z)− f(z)| < ε whenever n ≥ N

Thus the sequence of complex numbers defined by fn(z) con-
verges to f(z), but moreover converges, roughly speaking, at
the same rate,
Weierstrass M-test: Let S ⊆ C, fn : S → C be a sequence of
functions, M ≥ 0 be a sequence of non-negative numbers, such
that for all z ∈ S and all n ≥ n0, for some n0 ∈ N, we have
that |fn(z)| ≤Mn, and the series Σ∞j=0Mj converges. Then the
series Σ∞j=0fj(z) converges uniformly on S.
Lemma 4.1.21: Let S ⊆ C, fn : S → C be continuous func-
tions which converge uniformly to a function f :→ C, and Γ
be a contour inside S. Then the sequence of complex numbers∫

Γ
fn(z)dz converges to

∫
Γ
f(z)dz.

Lemma 4.1.22: Let S ⊆ C, fn : S → C be continuous func-
tions such that the series Σ∞j=0fj(z) converges uniformly on S,
and Γ be a contour inside S. Then∫

Γ

∞∑
j=0

fj(z)dz =

∞∑
j=0

∫
Γ

fj(z)dz
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Theorem 4.1.23: Let D ⊆ C be a simply connected domain,
and fn be holomorphic on D and converge uniformly to a func-
tion f : D → C. Then f is holomorphic on D.

Power Series

Power Series Definition: Let z0 ∈ C and an ∈ C be a se-
quence. A power series is an infinite series in the form.

∞∑
j=0

aj(z − z0)j

Where aj are the coefficients of the power series.
Theorem 4.2.2: Let Σ∞j=0aj(z − z0)j be a power series. Then
there is a number R ∈ [0,∞) ∪ {∞}, such that

• The series converges on DR(z0)

• The series converges uniformly on D̄r(z0) for any r ∈
[0, R)

• The series diverges on C\D̄R(z0)

Where R is the radius of convergence of the power series. If the
sequence | aj

aj+1
| has a limit, then the radius of convergence R is

equal to this limit.
Theorem 4.2.6: Let f(z) = Σ∞j=0aj(z − z0)j be a power se-
ries, with radius of convergence R. Then f is holomorphic on
DR(z0).

Taylor Series

Taylor Series Definition: Let z0 ∈ C and f be holomorphic
at z0. The Taylor Series of f centred at z0 is the power series:

∞∑
j=0

f (j)(z0)

j!
(z − z0)j

Theorem 4.3.2: Let z0 ∈ C, R > 0, and suppose f is holo-
morphic on DR(z0). Then the Taylor series for f centred at z0

converges to f(z) for all z ∈ DR(z0), and the convergence is
uniform on D̄r(z0) for all 0 ≤ r < R.
Analytic: Let U ⊆ C be open, and f : U → C. Then f is ana-
lytic if at every point z ∈ U , f can be expressed as a convergent
power series.
Theorem 4.3.5: Let U ⊆ C be open, and f : U → C be
holomorphic. Then f is analytic.

Examples: exp(z) =
∑∞
j=0

zj

j!

cos(z) =
∑∞
j=0(−1)j z

2j

(2j)!

sin(z) =
∑∞
j=0(−1)j z2j+1

(2j+1)!

Lemma 4.3.10: Let z0 ∈ C, R > 0, α, β ∈ C, and f, g be
holomorphic on DR(z0). Then

•

f ′(z) =

∞∑
j=0

f (j+1)(z0)

j!
(z − z0)j

For z ∈ DR(z0). i.e. the Taylor series for f ′ is found by
differentiating the Taylor series for f term-by-term.

• The Taylor series for αf + βg centred at z0, valid on
DR(z0), is the series:

∞∑
j=0

αf (j)(z0) + βg(j)(z0)

j!
(z − z0)j

• The Taylor series for fg centred at z0, valid on DR(z0),
is the series:

∞∑
j=0

1

j!

( j∑
k=0

(
j

k

)
f (k)(z0)g(j−k)(z0)

)
(z − z0)j

Laurent Series

Laurent Series Definition: Let z0 ∈ C, and ..., a−1, a0, a1, ...
be a doubly-infinite sequence of complex numbers. A Laurent
series centred at z0 has the form:

∞∑
j=0

aj(z − z0)j +

∞∑
j=1

a−j(z − z0)−j =

∞∑
j=−∞

aj(z − z0)j

Which converges if each of the two series on the LHS converge.
i.e the Laurent series converges for values of z ∈ C such that
r < |z − z0| < R.
Annulus: Let z0 ∈ C, and r,R ∈ [0,∞) ∪ {∞} Then:

• The open annulus of radii r and R centred at z0 is the set

Ar,R(z0) = {z ∈ C : r < |z − z0| < R}

• The closed annulus of radii r and R centred at z0 is the
set

Ār,R(z0) = {z ∈ C : r ≤ |z − z0| ≤ R}

Thus a Laurent series converges on an annulus.
Theorem 4.4.4: Let 0 ≤ r < R ≤ ∞ and f be holomorphic on
Ar,R(z0). Then f can be expressed as a Laurent series centred at
z0 which converges on Ar,R(z0), uniformly on Ār1,R1(z0) where
r < r1 ≤ R1 < R. Moreover the coefficients of the Laurent
series are given by:

aj =
1

2πi

∫
Γ

f(z)

(z − z0)j+1
dz

For any loop Γ lying inside Ar,R(z0) and containing z0 in its
interior.

Uniqueness of Laurent Series: Let z0 ∈ C and 0 ≤ r <
R ≤ ∞, and suppose the series Σ∞j=−∞cj(z − z0)j converges
on the annulus Ar,R(z0). Then there is a function f which is
holomorphic on Ar,R(z0) with Laurent series centred at z0 given
by

f(z) =

∞∑
j=−∞

cj(z − z0)j

Singularities and Zeros

Singularity: Let D ⊆ C be a domain, z0 ∈ C and f : D → C be
a function. We say z0 is a singularity of f if f is not holomorphic
at z0. A singularity is isolated if there exists R > 0 such that f
is holomorphic on the punctured disc D′R(z0) centred at z0.

Zeros: Let z0 ∈ C, U ⊆ C be a neighbourhood of z0 and f be
holomorphic on U . Then z0 is a zero of f is f(z0) = 0. z0 is a
zero of finite order if there exists a positive integer m such that:

f(z0) = f ′(z0) = ... = f (m−1)(z0) = 0 but f (m)(z0) 6= 0

Where z0 here is a zero of order m. If m = 1 then the zero is a
simple zero. A zero z0 of f is isolated if there exists R > 0 such
that f(z) 6= 0 for z ∈ D′R(z0).

Proposition 4.5.4: Let z0 ∈ C, U ⊆ C be a neighbourhood of
z0, and f be holomorphic on U , with a zero of finite order at z0.
Then z0 is isolated.

Corollary 4.5.6: Let z0 ∈ C be a singularity of a rational
function f = P/Q. Then z0 is isolated.

Singularity of a Holomorphic Function: Let z0 ∈ C be
an isolated singularity of a function f which is holomorphic
on D′R(z0) for some R > 0. Then f has a Laurent expan-
sion centred at z0 that is valid on A0,R(z0). Suppose f(z) =
Σ∞j=−∞aj(z − z0)j is the Laurent expansion centred at z0, valid
on A0,R(z0). Then z0 is:

• Removable Singularity: of f if aj = 0 ∀ j < 0, i.e.

f(z) =

∞∑
j=0

aj(z − z0)j

• Pole of Order m: of f for a positive integer m, if aj = 0
for j < −m and a−m 6= 0, i.e.

f(z) =

∞∑
j=−m

aj(z − z0)j

• Essential Singularity: if aj 6= 0 for infinitely many neg-
ative values of j.
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Theorem 4.5.8: Let z0 ∈ C be a removable singularity of a
function which is holomorphic on D′R(z0) for some R > 0. Then
f(z0) can be redefined so that f is holomorphic at z0.

Lemma 4.5.11: Let f , g be holomorphic at z0, where z0 is a
zero of g of order m. Then:

• If z0 is not a zero of f , then f/g has a pole of order m at
z0

• If z0 is a zero of order k of f , then f/g has a pole of order
m− k at z0 if m > k, and has a removable singularity at
z0 otherwise.

Analytic Continuation

Analytic Continuation: Let D ⊆ D̃ ⊆ C be domains, and
f : D → C be holomorphic. We say that a holomorphic func-
tion F : D̃ → C is an analytic continuation of f if F (z) = f(z)
for z ∈ D.

Identity Theorem: Let D ⊆ C be a domain z0 ∈ D, f be
holomorphic on D and such that f(z) = 0 ∀z ∈ DR(z0), for
some R > 0. then f(z) = 0 for all z ∈ D. This applies if ’0’ is
replaced with holomorphic on D g(z) also.

Corollary 4.6.7: Let D ⊆ C be a domain, z0 ∈ D, and f be
holomorphic on D and such that f(zn) = 0 for a sequence of
distinct points zn ∈ D which converges to z0. Then f(z) = 0 for
all z ∈ D. Corollary 4.6.8: Let D ⊆ C be a domain, z0 ∈ D,
and f, g be holomorphic on D such that f(zn) = g(zn) for a
sequence of distinct points zn ∈ D which converge to z0. Then
f(z) = g(z).

Example: Consider two holomorphic functions f(z) =
cos2(z) + sin2(z), and g(z) = 1. Since we know that cos2 x+
sin2 x = 1 for x ∈ R, we know that f = g on the real axis. Since
this contains convergent sequences, e.g. 1/n → 0, they agree
on their common domain, which is the whole complex plane. so
cos2(z) + sin2(z) = 1 for all z ∈ C.

The Residue Calculus

Theorem 5.1.1: Let z0 ∈ C, f be holomorphic on the punc-
tured disc D′R(z0) for some R > 0, with an isolated singularity
at z0, and Γ be a loop inside D′R(z0), with z0 in its interior.
Then: ∫

Γ

f(z)dz = 2πia−1

Where a−1 is the coefficient of the (z−z0)−1 term in the Laurent
expansion of f centred at z0 valid on D′R(z0)

f(z) =

∞∑
j=−∞

aj(z − z0)j

Residue: Let z0 ∈ C, and f be holomorphic on the punctured
disc D′R(z0), for some R > 0, with an isolated singularity at z0.
Then the residue of f at z0 is

Res(f, z0) = a−1

Where the Laurent series of f valid on D′R(z0) is:

f(z) =

∞∑
j=−∞

aj(z − z0)j

Lemma 5.1.4: Let z0 ∈ C, and f be holomorphic on the punc-
tured disc D′R(z0) for some R > 0, with a removable singularity
at z0. Then Res(f, z0) = 0.
Lemma 5.1.5: Let z0 ∈ C, and f be holomorphic on the punc-
tured disc D′R(z0) for some R > 0, with a pole of order m at z0.
Then:

Res (f, z0) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)m f(z))

Lemma 5.1.7: Let g, h be holomorphic on D′R(z0), for some
R > 0 such that h has a simple zero at z0, while g(z0) 6= 0.
Then defining f = g/h, we have that

Res(f, z0) =
g(z0)

h′(z0)

Example 5.1.8:
Cauchy Residue Theorem: Let Γ be a loop, and f be holo-
morphic inside and on Γ except for finitely many isolated singu-
larities z1, ..., zk in the interior of Γ, then:∫

Γ

f(z)dz = 2πi

k∑
j=1

Res (f, zj)

The Argument Principle

Meromorphic: Let D ⊆ C be a domain. A function f is mero-
morphic on D if for all z ∈ D, either f has a pole of some finite
order at z or f is holomorphic at z.
Lemma 5.2.2: Let D ⊆ C be a domain, Γ be a loop in D, and
f be meromorphic on D, and not identically zero. Then f has
a finite number of poles and zeros on the interior of Γ.

Zeros of Meromorphic Functions: Let Γ be a loop, and f
be meromorphic on the interior of Γ, with zeros w1, ..., wl and
poles z1, ..., zk in the interior of Γ. Then N0(f), the number of
zeros of f inside Γ, counted with multiplicity, and N∞(f), the
number of poles of f inside Γ, counted with multiplicity defined
as:

N0(f) =

l∑
j=1

order of wj , and N∞(f) =

k∑
j=1

order of zj

The Argument Principle: Let Γ be a loop in C, and f be
meromorphic on the interior of Γ, and holomorphic and non-zero
on Γ, then:

1

2πi

∫
Γ

f ′(z)

f(z)
dz = N0(f)−N∞(f)

Corollary 5.2.6: !
Rouché’s Theorem: Let Γ be a loop, and f, g be holomorphic
on and inside Γ such that for all z ∈ Γ,

|f(z)− g(z)| < |f(z)|

Then N0(f) = N0(g)
Fundamental Theorem of Algebra: Let g(z) = anz

n + ...+
a1z+ a0 be a polynomial of degree n, for a0, ..., an ∈ C. Then g
has n zeros, counted with multiplicity.
Open Mapping Theorem: Let D ⊆ C be a domain and sup-
pose f is non-constant and holomorphic on D. Then the image
of D under f , f(D) = {f(z) : z ∈ D}, is an open subset of C.
Maximum Modulus Principle: Let D ⊆ C be a domain and
f be holomorphic and non-constant on D. Then |f(z)| does not
attain a maximum on D.

Trigonometric Integrals

We can now start applying residue calculus to evaluate real in-
tegrals. Integrals of the form∫ 2π

0

R(cos θ, sin θ)dθ

for a rational function R can often be evaluated by considering
a contour integral of an appropriate function around the unit
circle. We have that:

cos θ = Re(z) =
z + z

2
=

1

2

(
z +

1

z

)

sin θ = Im(z) =
z − z

2i
=

1

2i

(
z − 1

z

)
!
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Improper Integrals

Improper Integrals: Let f : R → R be continuous. Then
we define the improper integrals whenever the appropriate limit
exists. ∫ ∞

0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx∫ 0

−∞
f(x)dx = lim

r→−∞

∫ 0

r

f(x)dx; and∫ ∞
−∞

f(x)dx = lim
R→∞
r→−∞

∫ R

r

f(x)dx

Note limits are taken independently in the final improper inte-
gral. ∫ ∞

−∞
f(x)dx = lim

ρ→∞

∫ ρ

−ρ
f(x)dx

If the improper integral on the LHS exists then it is equal to the
RHS. The RHS may exists even when the improper integral, de-
fined by taking the upper and lower limits independently, does
not. In this case we define the Cauchy Principle Value of the
integral by:

p.v.

∫ ∞
−∞

f(x)dx := lim
ρ→∞

∫ ρ

−ρ
f(x)dx

Jordan Lemma: Let R = P/Q be a rational function, where
deg(Q) ≥ deg(P ) + 1, and a ∈ R be non-zero, then:

lim
ρ→∞

∫
C+
ρ

exp(iaz)
P (z)

Q(z)
dz = 0 if a > 0, and

lim
ρ→∞

∫
C−ρ

exp(iaz)
P (z)

Q(z)
dz = 0 if a < 0

where C+
ρ and C−ρ are the semicircular contours from ρ to −ρ

in the upper and lower half-plane respectively.

Improper Integrals with Poles

Infinite Series

Lemma 5.6.4: Let 0 ≤ k ≤ n be non-negative integers, and let(
n
k

)
be the usual binomial coefficient, and let Γ be a loop with

0 in its interior. Then:(
n

k

)
=

1

2πi

∫
Γ

(1 + z)n

zk+1
dz

Definitions

• Contour: A curve Γ from z0 to z1 is a contour if it is a
finite union of regular curves, which together join z0 with
z1.

• Closed: If its endpoints are the same point. aka γ :
[t0, t1]→ C satisfies γ(t0) = γ(t1).

• Simple: If contour has no self-intersections, except pos-
sibly at the endpoints.

• Loop: Simple, closed contour.

• Orientation: Let Γ be a loop, then we say Γ is positively-
orientated if as we move along the curve in the direction
of parametrisation, the interior is on the left-hand side.

• Regular: if γ is continuously differentiable and γ′(t) 6= 0
for all t ∈ (t0, t1).

• (z + z̄)/2 = Re(z), and (z − z̄/2) = Im(z)

•
cos(z) =

exp(iz) + exp(−iz)
2

•
sin(z) =

exp(iz)− exp(−iz)
2i

•
cosh(z) =

exp(z) + exp(−z)
2

•
sinh(z) =

exp(z)− exp(−z)
2

• Antiderivative of 1
z(z−1)

is Log0(z−1 − 1).

• Binomial Theorem:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

with (
n

k

)
=

n!

k!(n− k)!

Examples

• exp(2nπi) = 1

• A continuous function on a closed and bounded set is
bounded.

• Real valued and non-constant =⇒ nowhere holomorphic
(Cauchy-Riemann or open mapping theorem).

• Polynomials are holomorphic everywhere.

• f(z) = z̄ is nowhere differentiable/holomorphic

•
f(z) =

z + i

z − i
is a conformal map that maps the strictly lower plane onto
D1(0)

• If Cauchy Riemann equations imply x0 = y0 then f is
differentiable on {z ∈ C : Re z = Im z}, which contains no
non-empty open sets, so f is nowhere holomorphic.

• Harmonic on wedge between real and π
4

: 4(x3y − xy3) =
Im(z4)

• f(z) = exp(z) is conformal since it’s holomorphic and
f ′(z) 6= 0 for all z.

• For a holomorphic function the Taylor series will converge
in the largest open disk which does not include any sin-
gularity.

• (1 + i)i = {exp( i
2
Log2− π/4− 2πk)|k ∈ Z}

= {e−π/4−2πk(cos( 1
2
Log2) + i sin( 1

2
Log2))|k ∈ Z}
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