Complex Variables
By Owen Fuller
Based on the notes by R. Gratwick

Introduction

A complex number has the form z = z + iy, where z € C is a
field.

Modulus of complex number (Mod): r = y/z2 + y?
Argument of complex number (arg): arg(z) = {0 : z =
re} = {Arg(z) + 2nk : k € Z}

Where —m < Arg(z) < = is the principal value of the argument.
De Moivre’s Formula: cos(nf) + isin(nf) = (cosf + isind)"
Triangle Inequality: |z + w| < |z] + |w|

Reverse Triangle Inequality: ||z]| — |w|| < |z — w|
Definition 1.2.1: Let zp € C, and ¢ > 0

e The open e-disc centred at zp is the set
D.(z0) ={z€C:|z— 2| <&}

e The closed e-disc centred at zp is the set

D.(z0) ={z€C:|z—z| < e}
e The punctured e-disc centred at zo is the set

D.(z0) ={2€C:0< |2 — 2| <e} = De(20)\{20}

Complex Functions

Complex Functions: Consider f : C — C. Then for each z,
f(z) = f(z +1iy) = u(z,y) + iv(z, ).

Continuous: Let S CC, f: S — C, and z0 € S. Then f is
continuous at zo if for all € > 0, there exists 6 > 0 such that

|f(20) — f(2)] < € whenever z € S satisfies |20 — 2] < §

Lemmas 1.3.7/8 Let f : C — C. Then f is continuous
at zo iff v and v are. And f is continuous iff the preimage
Y (U)={z€C: f(z) € U} is open for all open U C C

Differentiability: Let zop € C, U C C be a neighbourhood of
zo and f : U — C. Then f is differential at zo if the limit below

exists.
f(z) — f(20)

Z— 20

f'(z0) = lim

z— 20
Holomorphic: Let zo € C. We say f is holomorphic at zo
if there exists a neighbourhood U of zy on which f is defined
and differentiable. If it’s holomorphic at every z € U then f is
holomorphic on U.

Chain Rule: Let 290 € C, U be a neighbourhood of =z,
g : U — C be such that g(U) is a neighbourhood of g(zo),
and f : g(U) — C. Suppose g is differentiable at zo and f is
differentiable at g(zo). Then the composition of fog: U — C
is differentiable at zo

(f©9)'(20) = f'(9(20))g’ (20)
Cauchy-Riemann equations: Let f be differential at zo, then

0 0 0 0
a*Z(mo,yO) = K;(mo,y()), and 872(%’%) = *8*;(%0,2;0)

If w and v are continuously differentiable on a neighbourhood of
(z0,v0), and satisfy C-R at (xo,yo0), then f is differentiable at
z0-

Harmonic Functions: Let h : R* — R?. Then h is harmonic
if for all (z,y) € R? we have:

9*h 9*h
Pp2 (&Y) + W(xvy) =0
The Complex Exp and Log

exp(z + 27i) = exp(z)

log(z) = In|z| + iarg(z) = {In(r) + i@ + 27k : k € Z}
Branch Cut:

Lzo,qb:{ZGCZZ:ZO‘i’Tei(Z)fOI‘T'zO}

Cut Plane: D., 4 denotes the cut plane with a branch point
at zo and a branch cut along L., 4. i.e D.;.6 = C\Ly,¢-
Principal Branch: Log(z) := In|z| + i Arg(z)

Branch of log: Log(z) = In|z| +iArg,(2)

with ¢ < Arg,(z) < ¢+ 27

Which is holomorphic on the cut plane Dy, with Logy(z) = <
for all z in Dy.

Conformal Maps and
Mobius Transformations

Conformal: We say f : U — C is conformal if f preserves an-
gles: i.e if the angle between the images under f of two straight
lines in U is equal to the angle between the two straight lines
themselves. If f is holomorphic then is preserves angles at every
20 € U where f(20) # 0.

Theorem: If |f'(z)| # 0 for all z € C then f(z) is conformal on
C.

Mobbius Transformation: is a function of the form:

az+b
cz+d

flz) =

where a, b, ¢,d € C are such that ad # bc.
Lemma 2.2.3: To a complex matrix M = ((a,b), (¢,d)) with
det(M) = 1 we associate the Mobius transformation far(z) =

az+b .
od Under this correspondence we have

-1
Savryv, = g © fa, and fr—10 = fiy

Types of Mobius Boys:

e Translation: f(z) =z+b
e Rotation: f(z) = az, with |a| = 1, so that a = €%

e Dilation: f(z) =rz, where r >0

e Inversion: f(z) =1/z
Theorem 2.4.2: Let f be a Md&bius transformation. Then f is
a composition of a finite number of translations, rotations, dila-
tions and, iff f does not fix the point at infinity, one inversion.

Cor 2.4.3: Mobius transformations map circlines to circlines.
(circle or straight line)

Integration

/abf(t)dt = /ab u(t)dt +i/abv(t)dt

Let [a,b] C R be an interval, and let f,g :
integrable, and a5 € C. Then

[a,b] — C be

e of + (g is integrable

e If f is continuous and f = % for a differentiable function
F :[a,b] — C Then:

| fwit=ro) - F(@)

b b
I/fwﬁE/UMW



Contour Integrals

Definition 3.2.3: Let 20,21 € C be distinct, [' be a regular
curve connecting zop and z; and f : ' — C be continuous. Then
we define the integral of f along I' by:

[ = [ S (et

Arclength: Let I' be a regular curve in C. We define arclength
{(I') by

or) = / "l @)t = / BNCIOEESTIOE

e.g. let I' be an arc of a circle of radius r traced through an
angle 6. Then ¢(I') =10

Lemma 3.2.1: Let I' be parametrised by ~ : [0,1] — C, then
—TI" runs in the opposite direction, but along the same path,
parametrised by ¥(t) = v(1 — ¢) with

/_F f(z)dz = f/rf(z)dz

M-L Lemma: Let I" be a regular curve in C, and let f : I' = C
be continuous, then:

| [ #)a] < max s ler)

Domain Definition: We say D C C is a domain if D is open
and every two points in D can be connected by a contour which
lies wholly in D.

Fundamental Theorem of Calculus: Let D C C be a do-
main, I' be a contour in D joining points z0,z1 € D, and
f D — C have an antiderivative F on D Then:

/Ff(z)dz — F(z1) — F(z0)

Path Independence: Let D C C be a domain, and f : D — C
be continuous. Then the following are equivalent:

e f has an antiderivative F' on D
o [ f(z)dz = 0 for all closed contours I' in D

e All contour integrals fr f(2)dz are independent of path T',
and depend only on endpoints

Cauchy’s Integral Theorem: Let I be a loop, and f be holo-
morphic inside and on I". Then:

/rf(Z)dZ =0

Theorem 3.4.11: Let I' be a loop which does not pass through

zo0. Then:
/ 1 fomi
rz—z2 |0

Cauchy Integral Formula: Let I' be a loop, zp be in the
interior of I', and f be holomorphic inside and on I'. Then:

if zg € Int(T")

otherwise

flzo) = L (2) dz

2mi Jr 2 — 20

Generalised Cauchy Integral Formula: Let I' be a loop, f
be holomorphic inside and on I', and z lie inside I'. Then f is
infinitely differentiable at z and for all positive integers n:

_nl f(w)
= gni )L

Liouville’s Theorem and Applications

1"(2)

Liouville’s Theorem: Let f be holomorphic C and be
bounded, i.e. satisfy for some M > 0, |f(z)| < M for all z € C.
Then f is constant.

Fundamental Theorem of Algebra: Let P : C — C be a
polynomial. Then if P is non-constant, P has at least one root,
i.e. there exists at least one z st P(z) = 0.

The Maximum Modulus Principle

Theorem 3.7.1: Let D C C be a domain, 2o € D and R > 0
be such that the closed disc Dr(z0) C D, and f be holomorphic

on D Then )

Feo)= = [ flzo+ Rt

2 J,
Maximum Modulus Principle: Let D C C be a domain,
and f be holomorphic and bounded on D, |f(z)| < M, say, for
all z € D, for some M > 0. If |f(2)| achieves its maximum at
zo € D, then f is constant on D.
Maximum/Minimum Principle for Harmonic Func-
tions: Let D C R? be a domain, and ¢ : D — R be harmonic,
such that ¢ is bounded above or below on D by M > 0, and
@(z0) = M for some zo € D. Then ¢ is constant on D.

Series

Infinite Series

Definition 4.1.1: We say a series converges if the sequence
Sn € C of partial sums S, = 3]_oz; is a convergent sequence,

with limit S € C, in which case we say that X7_yz; = S. Oth-
erwise the series is divergent.

If S, is a convergent series, then z, — 0 as n — co.

While z, — 0 is a necessary condition for the series to converge,
it is not sufficient. e.g. E}L:I% is divergent.

The Comparison Test: Let z, € C be a sequence such that
\zn| < M, for some non-negative real numbers M,, for all
n > ng for some no € N, where X7_oM; is a convergent se-
ries. Then Z?:()zj is a convergent series.

Lemma 4.1.7: X}_,c’ is convergent iff |c| < 1.

The Ratio Test: Let z, € C be a sequence, and suppose that

im |22l g

n—oo Zn

o If L < 1, the series ¥7_(z; is convergent
o If L > 1, the series ¥7_(z2; is divergent
o If L =1 then the test is inconclusive

Pointwise Convergence: Let S C C, and f, : S — C be a
sequence of functions. We say that f, converges pointwise to a
function f : S — C if for each z € S, for any € > 0, there exists
N € N such that:

|fn(z) — f(2)| < € whenever n > N

Thus the sequence of complex numbers defined by f,(z) con-
verges to f(z)

Uniform Convergence: Let S C C, and f, : S — C be a
sequence of functions. We say that f, converges uniformly to a
function f : S — C if for any € > 0, there exists N € N such
that for all z € S:

|fn(2) — f(2)] < € whenever n > N

Thus the sequence of complex numbers defined by f,(z) con-
verges to f(z), but moreover converges, roughly speaking, at
the same rate,

Weierstrass M-test: Let S C C, f, : S — C be a sequence of
functions, M > 0 be a sequence of non-negative numbers, such
that for all z € S and all n > ng, for some no € N, we have
that | fn(2)| < My, and the series X2, M; converges. Then the
series ¥52, f;(z) converges uniformly on S.

Lemma 4.1.21: Let S C C, f,, : S — C be continuous func-
tions which converge uniformly to a function f :— C, and T’
be a contour inside S. Then the sequence of complex numbers
Jp fn(2)dz converges to [, f(z)dz.

Lemma 4.1.22: Let S C C, f, : S — C be continuous func-
tions such that the series ¥52, f;(2) converges uniformly on S,
and I" be a contour inside S. Then

/ ifj(Z)dz - fj [ ez



Theorem 4.1.23: Let D C C be a simply connected domain,
and f, be holomorphic on D and converge uniformly to a func-
tion f: D — C. Then f is holomorphic on D.

Power Series

Power Series Definition: Let zp € C and a, € C be a se-
quence. A power series is an infinite series in the form.

e .
Z aj(z — 20)’
j=0

Where a; are the coefficients of the power series.
Theorem 4.2.2: Let X72ya;(z — z0)? be a power series. Then
there is a number R € [0, 00) U {co}, such that

e The series converges on Dr(z0)

e The series converges uniformly on D, (z) for any r €
[0, R)

e The series diverges on C\Dr(20)

Where R is the radius of convergence of the power series. If the
sequence |a;i1 | has a limit, then the radius of convergence R is
equal to this limit.

Theorem 4.2.6: Let f(z) = £32a;(z — 20)’ be a power se-
ries, with radius of convergence R. Then f is holomorphic on
DR(Zo).

Taylor Series

Taylor Series Definition: Let zop € C and f be holomorphic
at zg. The Taylor Series of f centred at 2y is the power series:

Theorem 4.3.2: Let zo € C, R > 0, and suppose f is holo-
morphic on Dg(zo). Then the Taylor series for f centred at zo
converges to f(z) for all z € Dg(20), and the convergence is
uniform on Dr(zo) for all 0 <7 < R.

Analytic: Let U C C be open, and f : U — C. Then f is ana-
lytic if at every point z € U, f can be expressed as a convergent
power series.

Theorem 4.3.5: Let U C C be open, and f : U — C be
holomorphic. Then f is analytic.

Examples: exp(z) =} 72, j—],
oo j 2%
cos(2) = 22726(=1) &y
2541

sin(z) = 32720 (=1)’ Gy
Lemma 4.3.10: Let zo € C, R > 0, o,8 € C, and f,g be
holomorphic on Dg(z0). Then

> f(i+1) 20

=0

(z = 20)

For z € Dg(z0). i.e. the Taylor series for f’ is found by
differentiating the Taylor series for f term-by-term.

e The Taylor series for af + B¢ centred at zp, valid on
Dr(z0), is the series:

i af (z) ]+| B9V (=), v
j=0 ’

e The Taylor series for fg centred at zo, valid on Dg(z0),
is the series:

> % ( > <i> fm(ZO)g(j*k)(ZO)) (z — 20)’
=0 k=0

Laurent Series

Laurent Series Definition: Let zp € C, and ...,a_1, a0, a1, ...
be a doubly-infinite sequence of complex numbers. A Laurent
series centred at zo has the form:

oo} oo oo

Zaj(Z—ZQ)j —|—Za_j(z—zo)_j = Z a;(z — z0)°

j=0 j=1 j=—o0

Which converges if each of the two series on the LHS converge.
i.e the Laurent series converges for values of z € C such that
r<|z—z| <R.

Annulus: Let 20 € C, and 7, R € [0,00) U {oo} Then:

e The open annulus of radii 7 and R centred at zo is the set
Arr(z0) ={2€C:r<|z— 20| <R}

e The closed annulus of radii » and R centred at zg is the
set
A r(20) ={2€C:r<|z—2| <R}

Thus a Laurent series converges on an annulus.
Theorem 4.4.4: Let 0 <r < R < oo and f be holomorphic on
Ar r(20). Then f can be expressed as a Laurent series centred at
zo which converges on A, r(z0), uniformly on Al Rry (z0) where
r < r < Ri < R. Moreover the coefficients of the Laurent
series are given by:

1
2wt Jr (2 — 2z0)7F
For any loop I" lying inside A r(z0) and containing zo in its
interior.

Uniqueness of Laurent Series: Let 2o € Cand 0 < r <
R < oo, and suppose the series ¥52_ . cj(z — 20)? converges
on the annulus A, r(20). Then there is a function f which is
holomorphic on A, r(z0) with Laurent series centred at zo given

by

oo

> cilz— =)

j=—o00

f(z) =

Singularities and Zeros

Singularity: Let D C C be a domain, zo € Cand f : D — C be
a function. We say zo is a singularity of f if f is not holomorphic
at zo. A singularity is isolated if there exists R > 0 such that f
is holomorphic on the punctured disc qu(zo) centred at zo.

Zeros: Let zp € C, U C C be a neighbourhood of zp and f be
holomorphic on U. Then zq is a zero of f is f(z0) = 0. zo is a
zero of finite order if there exists a positive integer m such that:

f(z0) = f'(20) = ... = £V (20) = 0 but f™ (20) # 0

Where 2o here is a zero of order m. If m = 1 then the zero is a
simple zero. A zero zp of f is isolated if there exists R > 0 such
that f(z) # 0 for z € Dr(20).

Proposition 4.5.4: Let zp € C, U C C be a neighbourhood of
20, and f be holomorphic on U, with a zero of finite order at zo.
Then zo is isolated.

Corollary 4.5.6: Let zg € C be a singularity of a rational
function f = P/Q. Then z is isolated.

Singularity of a Holomorphic Function: Let zp € C be
an isolated singularity of a function f which is holomorphic
on DR(z0) for some R > 0. Then f has a Laurent expan-
sion centred at zo that is valid on Ao r(20). Suppose f(z) =
332 oa;(z — z0)’ is the Laurent expansion centred at zo, valid
on Ao, r(20). Then zg is:

e Removable Singularity: of fifa; =0V j <0, i.e.
fz2) =3 aj(z— =)
§=0

e Pole of Order m: of f for a positive integer m, if a; =0
for j < —m and a_m # 0, i.e.

oo

Z aj(z—z)

j=—m

fz) =

e Essential Singularity: if a; # 0 for infinitely many neg-
ative values of j.



Theorem 4.5.8: Let zp € C be a removable singularity of a
function which is holomorphic on D’;(20) for some R > 0. Then
f(20) can be redefined so that f is holomorphic at zo.

Lemma 4.5.11: Let f, g be holomorphic at zo, where 2 is a
zero of g of order m. Then:

e If 29 is not a zero of f, then f/g has a pole of order m at
20

e If zo is a zero of order k of f, then f/g has a pole of order
m — k at zo if m > k, and has a removable singularity at
zo otherwise.

Analytic Continuation

Analytic Continuation: Let D C D C C be domains, and
f + D — C be holomorphic. We say that a holomorphic func-
tion F: D — C is an analytic continuation of f if F(z) = f(2)
for z € D.

Identity Theorem: Let D C C be a domain 2o € D, f be
holomorphic on D and such that f(z) = 0 Vz € Dg(20), for
some R > 0. then f(z) = 0 for all z € D. This applies if "0’ is
replaced with holomorphic on D g(z) also.

Corollary 4.6.7: Let D C C be a domain, 2o € D, and f be
holomorphic on D and such that f(z,) = 0 for a sequence of
distinct points z, € D which converges to zo. Then f(z) = 0 for
all z € D. Corollary 4.6.8: Let D C C be a domain, zp € D,
and f, g be holomorphic on D such that f(z,) = g(zn) for a
sequence of distinct points z, € D which converge to zo. Then
f(z) =9g(2).

Example: Consider two holomorphic functions f(z) =
cos?(z) +sin?(z), and g(z) = 1. Since we know that cos®z +
sin?x = 1 for € R, we know that f = g on the real axis. Since
this contains convergent sequences, e.g. 1/n — 0, they agree
on their common domain, which is the whole complex plane. so
cos?(z) +sin®(z) =1 for all z € C.

The Residue Calculus

Theorem 5.1.1: Let zp € C, f be holomorphic on the punc-
tured disc Dy (20) for some R > 0, with an isolated singularity
at 29, and T' be a loop inside D%;(20), with zo in its interior.
Then:

/ f(2)dz = 2mia_1
r

Where a_ is the coefficient of the (z—zo)f1 term in the Laurent
expansion of f centred at zo valid on D' (20)

oo

Z aj(z — zo)j

j=—o00

flz) =

Residue: Let zp € C, and f be holomorphic on the punctured
disc D'z(20), for some R > 0, with an isolated singularity at zo.
Then the residue of f at zp is

Res(f,z0) = a—1

Where the Laurent series of f valid on D%(20) is:

o]

Z aj(z — 20)’

j=—o00

flz) =

Lemma 5.1.4: Let 2o € C, and f be holomorphic on the punc-
tured disc D (z0) for some R > 0, with a removable singularity
at zo. Then Res(f, z0) = 0.

Lemma 5.1.5: Let zp € C, and f be holomorphic on the punc-
tured disc Dz (20) for some R > 0, with a pole of order m at zo.
Then:

1 dm71

Res (f, z0) = Jim (m — D)l dzm—1 ((z = 20)" f(2))

Lemma 5.1.7: Let g,h be holomorphic on D%;(20), for some
R > 0 such that h has a simple zero at zp, while g(z0) # 0.
Then defining f = g/h, we have that

g(zo0)
h'(20)

Res(f, 20) =

Example 5.1.8:

Cauchy Residue Theorem: Let I' be a loop, and f be holo-
morphic inside and on I' except for finitely many isolated singu-
larities z1, ..., zx in the interior of I', then:

k
/ f(z)dz = 2m’ZRes (f,25)
r =

The Argument Principle

Meromorphic: Let D C C be a domain. A function f is mero-
morphic on D if for all z € D, either f has a pole of some finite
order at z or f is holomorphic at z.

Lemma 5.2.2: Let D C C be a domain, I' be a loop in D, and
f be meromorphic on D, and not identically zero. Then f has
a finite number of poles and zeros on the interior of I'.

Zeros of Meromorphic Functions: Let I' be a loop, and f
be meromorphic on the interior of I', with zeros wi, ..., w; and
poles z1, ..., z in the interior of I'. Then Ny(f), the number of
zeros of f inside I', counted with multiplicity, and Noo(f), the
number of poles of f inside I', counted with multiplicity defined
as:

! k
No(f) = Z order of w;, and Neo(f) = Z order of z;
j=1 j=1

The Argument Principle: Let I" be a loop in C, and f be
meromorphic on the interior of I'; and holomorphic and non-zero
on I', then:

1 [ f(2)
2mi Jp f(2)

Corollary 5.2.6: !
Rouché’s Theorem: Let I' be a loop, and f, g be holomorphic
on and inside I'" such that for all z € T,

1£(z) = g(2)] <|f(2)]

Then No(f) = No(g)

Fundamental Theorem of Algebra: Let g(z) = anz™ +...+
a1z + ao be a polynomial of degree n, for ag, ...,a, € C. Then g
has n zeros, counted with multiplicity.

Open Mapping Theorem: Let D C C be a domain and sup-
pose f is non-constant and holomorphic on D. Then the image
of D under f, f(D) = {f(z) : z € D}, is an open subset of C.
Maximum Modulus Principle: Let D C C be a domain and
f be holomorphic and non-constant on D. Then |f(z)| does not
attain a maximum on D.

dz = No(f) = Noo(f)

Trigonometric Integrals

We can now start applying residue calculus to evaluate real in-
tegrals. Integrals of the form

27
R(cos0,sin 0)do
0
for a rational function R can often be evaluated by considering
a contour integral of an appropriate function around the unit
circle. We have that:

cosG:Re(z):Z+Z:1(z+%>

2 2
sinf = Im(z) = 22_2 = 2l (zfl)
j i z



Improper Integrals

Improper Integrals: Let f : R — R be continuous. Then
we define the improper integrals whenever the appropriate limit
exists.

/oo f(z)dz = lim Rf(m)dx
0 R—oo

0

0 0
/ f(z)de = lim f(z)dz; and

/_0:0 f(z)dx = /TR f(z)dx

Note limits are taken independently in the final improper inte-

gral.
[m flx)dx = pli_}r{.lo [p flx)dx

If the improper integral on the LHS exists then it is equal to the
RHS. The RHS may exists even when the improper integral, de-
fined by taking the upper and lower limits independently, does
not. In this case we define the Cauchy Principle Value of the
integral by:

lim
R— o0
r— —00

p.v. /00 f(x)dx := lim ’ f(x)dx

.
p—oo [,

Jordan Lemma: Let R = P/Q be a rational function, where
deg(Q) > deg(P) + 1, and a € R be non-zero, then:

lim exp(iaz) P(z) dz=0 ifa>0, and
proe Jof Q(2)
lim exp(iaz dz=0 1ifa<0
P Jo, p( )Q(z)

where C’j and C, are the semicircular contours from p to —p
in the upper and lower half-plane respectively.
Improper Integrals with Poles

Infinite Series

Lemma 5.6.4: Let 0 < k < n be non-negative integers, and let
(Z) be the usual binomial coefficient, and let I" be a loop with

0 in its interior. Then:

(1+2)"
Skl

dz

n\_ 1
k] 2mi

Definitions

Contour: A curve I from zg to z; is a contour if it is a
finite union of regular curves, which together join zo with
Z1.

Closed: If its endpoints are the same point.
[to,t1] — C satisfies y(to) = v(t1).

aka v :

Simple: If contour has no self-intersections, except pos-
sibly at the endpoints.

Loop: Simple, closed contour.

Orientation: Let ' be a loop, then we say I is positively-
orientated if as we move along the curve in the direction
of parametrisation, the interior is on the left-hand side.

Regular: if 7 is continuously differentiable and ~'(¢) # 0
for all t € (to,t1).

(z+ 2)/2 = Re(z), and (z — 2/2) = Im(z)

exp(iz) + exp(—iz)

cos(z) = .
sin(z) = SXP02) ;;Xp(—iz)
cosh(z) = w
sinh(z) = SPG) —exp(=2)

2

Antiderivative of ﬁ is Logo(z_l —1).

e Binomial Theorem:

(z+y)" =

= n mnfk k
L Yy
k=

o

with

Examples

e exp(2nmi) =1

e A continuous function on a closed and bounded set is
bounded.

e Real valued and non-constant = nowhere holomorphic
(Cauchy-Riemann or open mapping theorem).

e Polynomials are holomorphic everywhere.

e f(z) = z is nowhere differentiable/holomorphic

z+1
1o)==
is a conformal map that maps the strictly lower plane onto

D1(0)

e If Cauchy Riemann equations imply x¢o = yo then f is
differentiable on {z € C : Re z = Im z}, which contains no
non-empty open sets, so f is nowhere holomorphic.

e Harmonic on wedge between real and 7: 4(2Py — xy®) =
Im(z%)

e f(z) = exp(z) is conformal since it’s holomorphic and
1 (2) #0 for all z.

e For a holomorphic function the Taylor series will converge
in the largest open disk which does not include any sin-
gularity.

o (1+1i)" = {exp(iLog2 — 7/4 — 27k)|k € Z}
= {e‘”/4_2”k(cos(%Log2) + isin(3Log2))|k € Z}



